Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 31(4): 591-597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287195

RESUMO

Cell-surface receptor complexes mediated by pro-inflammatory interleukin (IL)-12 and IL-23, both validated therapeutic targets, are incompletely understood due to the lack of structural insights into their complete extracellular assemblies. Furthermore, there is a paucity of structural details describing the IL-12-receptor interaction interfaces, in contrast to IL-23-receptor complexes. Here we report structures of fully assembled mouse IL-12/human IL-23-receptor complexes comprising the complete extracellular segments of the cognate receptors determined by electron cryo-microscopy. The structures reveal key commonalities but also surprisingly diverse features. Most notably, whereas IL-12 and IL-23 both utilize a conspicuously presented aromatic residue on their α-subunit as a hotspot to interact with the N-terminal Ig domain of their high-affinity receptors, only IL-12 juxtaposes receptor domains proximal to the cell membrane. Collectively, our findings will help to complete our understanding of cytokine-mediated assemblies of tall cytokine receptors and will enable a cytokine-specific interrogation of IL-12/IL-23 signaling in physiology and disease.


Assuntos
Interleucina-12 , Transdução de Sinais , Humanos , Animais , Camundongos , Transdução de Sinais/fisiologia , Interleucina-23 , Citocinas/metabolismo , Receptores de Superfície Celular
2.
Elife ; 122024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194250

RESUMO

Spontaneous protein crystallization is a rare event, yet protein crystals are frequently found in eosinophil-rich inflammation. In humans, Charcot-Leyden crystals (CLCs) are made from galectin-10 (Gal10) protein, an abundant protein in eosinophils. Although mice do not encode Gal10 in their genome, they do form pseudo-CLCs, made from the chitinase-like proteins Ym1 and/or Ym2, encoded by Chil3 and Chil4 and made by myeloid and epithelial cells respectively. Here, we investigated the biological effects of pseudo-CLCs since their function is currently unknown. We produced recombinant Ym1 crystals which were shown to have identical crystal packing and structure by X-ray crystallography as in vivo native crystals derived from murine lung. When administered to the airways of mice, crystalline but not soluble Ym1 stimulated innate and adaptive immunity and acted as a type 2 immune adjuvant for eosinophilic inflammation via triggering of dendritic cells (DCs). Murine Ym1 protein crystals found at sites of eosinophilic inflammation reinforce type 2 immunity and could serve as a surrogate model for studying the biology of human CLCs.


Assuntos
Imunidade Adaptativa , Quitinases , Animais , Humanos , Camundongos , Adjuvantes Imunológicos , Cristalização , Inflamação
3.
EMBO J ; 43(5): 695-718, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177501

RESUMO

Intestinal goblet cells are secretory cells specialized in the production of mucins, and as such are challenged by the need for efficient protein folding. Goblet cells express Inositol-Requiring Enzyme-1ß (IRE1ß), a unique sensor in the unfolded protein response (UPR), which is part of an adaptive mechanism that regulates the demands of mucin production and secretion. However, how IRE1ß activity is tuned to mucus folding load remains unknown. We identified the disulfide isomerase and mucin chaperone AGR2 as a goblet cell-specific protein that crucially regulates IRE1ß-, but not IRE1α-mediated signaling. AGR2 binding to IRE1ß disrupts IRE1ß oligomerization, thereby blocking its downstream endonuclease activity. Depletion of endogenous AGR2 from goblet cells induces spontaneous IRE1ß activation, suggesting that alterations in AGR2 availability in the endoplasmic reticulum set the threshold for IRE1ß activation. We found that AGR2 mutants lacking their catalytic cysteine, or displaying the disease-associated mutation H117Y, were no longer able to dampen IRE1ß activity. Collectively, these results demonstrate that AGR2 is a central chaperone regulating the goblet cell UPR by acting as a rheostat of IRE1ß endonuclease activity.


Assuntos
Células Caliciformes , Chaperonas Moleculares , Mucinas , Endonucleases , Células Caliciformes/metabolismo , Chaperonas Moleculares/genética , Mucinas/genética , Isomerases de Dissulfetos de Proteínas , Humanos , Linhagem Celular Tumoral
4.
Sci Rep ; 13(1): 17992, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865713

RESUMO

A20 serves as a critical brake on NF-κB-dependent inflammation. In humans, polymorphisms in or near the TNFAIP3/A20 gene have been linked to various inflammatory disorders, including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Experimental gene knockout studies in mice have confirmed A20 as a susceptibility gene for SLE and RA. Here, we examine the significance of protein citrullination and NET formation in the autoimmune pathology of A20 mutant mice because autoimmunity directed against citrullinated antigens released by neutrophil extracellular traps (NETs) is central to the pathogenesis of RA and SLE. Furthermore, genetic variants impairing the deubiquitinase (DUB) function of A20 have been shown to contribute to autoimmune susceptibility. Our findings demonstrate that genetic disruption of A20 DUB function in A20 C103R knockin mice does not result in autoimmune pathology. Moreover, we show that PAD4 deficiency, which abolishes protein citrullination and NET formation, does not prevent the development of autoimmunity in A20 deficient mice. Collectively, these findings provide experimental confirmation that PAD4-dependent protein citrullination and NET formation do not serve as pathogenic mechanisms in the development of RA and SLE pathology in mice with A20 mutations.


Assuntos
Artrite Reumatoide , Armadilhas Extracelulares , Lúpus Eritematoso Sistêmico , Humanos , Animais , Camundongos , Citrulinação , Artrite Reumatoide/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Inflamação/metabolismo , Autoimunidade/genética , Armadilhas Extracelulares/metabolismo
5.
N Engl J Med ; 388(24): 2253-2261, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37314706

RESUMO

Hormone absence or inactivity is common in congenital disease, but hormone antagonism remains controversial. Here, we characterize two novel homozygous leptin variants that yielded antagonistic proteins in two unrelated children with intense hyperphagia, severe obesity, and high circulating levels of leptin. Both variants bind to the leptin receptor but trigger marginal, if any, signaling. In the presence of nonvariant leptin, the variants act as competitive antagonists. Thus, treatment with recombinant leptin was initiated at high doses, which were gradually lowered. Both patients eventually attained near-normal weight. Antidrug antibodies developed in the patients, although they had no apparent effect on efficacy. No severe adverse events were observed. (Funded by the German Research Foundation and others.).


Assuntos
Leptina , Obesidade Mórbida , Criança , Humanos , Anticorpos , Homozigoto , Leptina/genética , Obesidade Mórbida/genética , Transdução de Sinais
6.
Nat Commun ; 14(1): 2625, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149653

RESUMO

Recently it has become possible to de novo design high affinity protein binding proteins from target structural information alone. There is, however, considerable room for improvement as the overall design success rate is low. Here, we explore the augmentation of energy-based protein binder design using deep learning. We find that using AlphaFold2 or RoseTTAFold to assess the probability that a designed sequence adopts the designed monomer structure, and the probability that this structure binds the target as designed, increases design success rates nearly 10-fold. We find further that sequence design using ProteinMPNN rather than Rosetta considerably increases computational efficiency.


Assuntos
Aprendizado Profundo , Engenharia de Proteínas , Proteínas/metabolismo , Ligação Proteica
8.
Nat Struct Mol Biol ; 30(4): 551-563, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36959263

RESUMO

The adipokine Leptin activates its receptor LEP-R in the hypothalamus to regulate body weight and exerts additional pleiotropic functions in immunity, fertility and cancer. However, the structure and mechanism of Leptin-mediated LEP-R assemblies has remained unclear. Intriguingly, the signaling-competent isoform of LEP-R is only lowly abundant amid several inactive short LEP-R isoforms contributing to a mechanistic conundrum. Here we show by X-ray crystallography and cryo-EM that, in contrast to long-standing paradigms, Leptin induces type I cytokine receptor assemblies featuring 3:3 stoichiometry and demonstrate such Leptin-induced trimerization of LEP-R on living cells via single-molecule microscopy. In mediating these assemblies, Leptin undergoes drastic restructuring that activates its site III for binding to the Ig domain of an adjacent LEP-R. These interactions are abolished by mutations linked to obesity. Collectively, our study provides the structural and mechanistic framework for how evolutionarily conserved Leptin:LEP-R assemblies with 3:3 stoichiometry can engage distinct LEP-R isoforms to achieve signaling.


Assuntos
Adipocinas , Leptina , Leptina/genética , Leptina/metabolismo , Leptina/farmacologia , Isoformas de Proteínas/genética , Transdução de Sinais
9.
ISME J ; 17(4): 588-599, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36721060

RESUMO

Ammonia oxidation, as the first step of nitrification, constitutes a critical process in the global nitrogen cycle. However, fundamental knowledge of its key enzyme, the copper-dependent ammonia monooxygenase, is lacking, in particular for the environmentally abundant ammonia-oxidizing archaea (AOA). Here the structure of the enzyme is investigated by blue-native gel electrophoresis and proteomics from native membrane complexes of two AOA. Besides the known AmoABC subunits and the earlier predicted AmoX, two new protein subunits, AmoY and AmoZ, were identified. They are unique to AOA, highly conserved and co-regulated, and their genes are linked to other AMO subunit genes in streamlined AOA genomes. Modeling and in-gel cross-link approaches support an overall protomer structure similar to the distantly related bacterial particulate methane monooxygenase but also reveals clear differences in extracellular domains of the enzyme. These data open avenues for further structure-function studies of this ecologically important nitrification complex.


Assuntos
Amônia , Archaea , Archaea/genética , Archaea/metabolismo , Amônia/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Nitrificação , Microbiologia do Solo , Filogenia
10.
Nat Struct Mol Biol ; 30(3): 273-285, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702972

RESUMO

Target of rapamycin complex 1 (TORC1) is a protein kinase controlling cell homeostasis and growth in response to nutrients and stresses. In Saccharomyces cerevisiae, glucose depletion triggers a redistribution of TORC1 from a dispersed localization over the vacuole surface into a large, inactive condensate called TOROID (TORC1 organized in inhibited domains). However, the mechanisms governing this transition have been unclear. Here, we show that acute depletion and repletion of EGO complex (EGOC) activity is sufficient to control TOROID distribution, independently of other nutrient-signaling pathways. The 3.9-Å-resolution structure of TORC1 from TOROID cryo-EM data together with interrogation of key interactions in vivo provide structural insights into TORC1-TORC1' and TORC1-EGOC interaction interfaces. These data support a model in which glucose-dependent activation of EGOC triggers binding to TORC1 at an interface required for TOROID assembly, preventing TORC1 polymerization and promoting release of active TORC1.


Assuntos
Proteínas de Saccharomyces cerevisiae , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Polimerização , Fatores de Transcrição/metabolismo , Saccharomyces cerevisiae/metabolismo , Glucose/metabolismo
11.
Nat Rev Mol Cell Biol ; 24(5): 312-333, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36543934

RESUMO

Regulated cell death (RCD) relies on activation and recruitment of pore-forming proteins (PFPs) that function as executioners of specific cell death pathways: apoptosis regulator BAX (BAX), BCL-2 homologous antagonist/killer (BAK) and BCL-2-related ovarian killer protein (BOK) for apoptosis, gasdermins (GSDMs) for pyroptosis and mixed lineage kinase domain-like protein (MLKL) for necroptosis. Inactive precursors of PFPs are converted into pore-forming entities through activation, membrane recruitment, membrane insertion and oligomerization. These mechanisms involve protein-protein and protein-lipid interactions, proteolytic processing and phosphorylation. In this Review, we discuss the structural rearrangements incurred by RCD-related PFPs and describe the mechanisms that manifest conversion from autoinhibited to membrane-embedded molecular states. We further discuss the formation and maturation of membrane pores formed by BAX/BAK/BOK, GSDMs and MLKL, leading to diverse pore architectures. Lastly, we highlight commonalities and differences of PFP mechanisms involving BAX/BAK/BOK, GSDMs and MLKL and conclude with a discussion on how, in a population of challenged cells, the coexistence of cell death modalities may have profound physiological and pathophysiological implications.


Assuntos
Apoptose , Proteína X Associada a bcl-2/metabolismo , Membrana Celular/metabolismo , Membranas/metabolismo
12.
Cell Rep ; 41(3): 111490, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36261006

RESUMO

Interleukin-27 (IL-27) uniquely assembles p28 and EBI3 subunits to a heterodimeric cytokine that signals via IL-27Rα and gp130. To provide the structural framework for receptor activation by IL-27 and its emerging therapeutic targeting, we report here crystal structures of mouse IL-27 in complex with IL-27Rα and of human IL-27 in complex with SRF388, a monoclonal antibody undergoing clinical trials with oncology indications. One face of the helical p28 subunit interacts with EBI3, while the opposite face nestles into the interdomain elbow of IL-27Rα to juxtapose IL-27Rα to EBI3. This orients IL-27Rα for paired signaling with gp130, which only uses its immunoglobulin domain to bind to IL-27. Such a signaling complex is distinct from those mediated by IL-12 and IL-23. The SRF388 binding epitope on IL-27 overlaps with the IL-27Rα interaction site explaining its potent antagonistic properties. Collectively, our findings will facilitate the mechanistic interrogation, engineering, and therapeutic targeting of IL-27.


Assuntos
Interleucina-27 , Humanos , Camundongos , Animais , Receptor gp130 de Citocina/metabolismo , Receptores de Citocinas/metabolismo , Interleucina-12 , Citocinas , Anticorpos Monoclonais/farmacologia , Epitopos , Interleucina-23
13.
Nat Commun ; 13(1): 6073, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241613

RESUMO

Binding to the neonatal Fc receptor (FcRn) extends serum half-life of IgG, and antagonizing this interaction is a promising therapeutic approach in IgG-mediated autoimmune diseases. Fc-MST-HN, designed for enhanced FcRn binding capacity, has not been evaluated in the context of a full-length antibody, and the structural properties of the attached Fab regions might affect the FcRn-mediated intracellular trafficking pathway. Here we present a comprehensive comparative analysis of the IgG salvage pathway between two full-size IgG1 variants, containing wild type and MST-HN Fc fragments, and their Fc-only counterparts. We find no evidence of Fab-regions affecting FcRn binding in cell-free assays, however, cellular assays show impaired binding of full-size IgG to FcRn, which translates into improved intracellular FcRn occupancy and intracellular accumulation of Fc-MST-HN compared to full size IgG1-MST-HN. The crystal structure of Fc-MST-HN in complex with FcRn provides a plausible explanation why the Fab disrupts the interaction only in the context of membrane-associated FcRn. Importantly, we find that Fc-MST-HN outperforms full-size IgG1-MST-HN in reducing IgG levels in cynomolgus monkeys. Collectively, our findings identify the cellular membrane context as a critical factor in FcRn biology and therapeutic targeting.


Assuntos
Anticorpos Monoclonais , Doenças Autoimunes , Animais , Doenças Autoimunes/tratamento farmacológico , Antígenos de Histocompatibilidade Classe I , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G , Macaca fascicularis/metabolismo , Ligação Proteica , Receptores Fc
15.
J Biol Chem ; 298(5): 101908, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398099

RESUMO

Human Interleukin-18 (IL-18) is an omnipresent proinflammatory cytokine of the IL-1 family with central roles in autoimmune and inflammatory diseases and serves as a staple biomarker in the evaluation of inflammation in physiology and disease, including the inflammatory phase of COVID-19. The sequestration of IL-18 by its soluble decoy receptor IL-18-Binding Protein (IL-18BP) is critical to the regulation of IL-18 activity. Since an imbalance in expression and circulating levels of IL-18 is associated with disease, structural insights into how IL-18BP outcompetes binding of IL-18 by its cognate cell-surface receptors are highly desirable; however, the structure of human IL-18BP in complex with IL-18 has been elusive. Here, we elucidate the sequestration mechanism of human IL-18 mediated by IL-18BP based on the crystal structure of the IL-18:IL-18BP complex. These detailed structural snapshots reveal the interaction landscape leading to the ultra-high affinity of IL-18BP toward IL-18 and identify substantial differences with respect to previously characterized complexes of IL-18 with IL-18BP of viral origin. Furthermore, our structure captured a fortuitous higher-order assembly between IL-18 and IL-18BP coordinated by a disulfide-bond distal to the binding surface connecting IL-18 and IL-18BP molecules from different complexes, resulting in a novel tetramer with 2:2 stoichiometry. This tetrapartite assembly was found to restrain IL-18 activity more effectively than the canonical 1:1 complex. Collectively, our findings provide a framework for innovative, structure-driven therapeutic strategies and further functional interrogation of IL-18 in physiology and disease.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-18/metabolismo , COVID-19/imunologia , Humanos , Inflamação , Neoplasias/imunologia
16.
Nature ; 605(7910): 551-560, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35332283

RESUMO

The design of proteins that bind to a specific site on the surface of a target protein using no information other than the three-dimensional structure of the target remains a challenge1-5. Here we describe a general solution to this problem that starts with a broad exploration of the vast space of possible binding modes to a selected region of a protein surface, and then intensifies the search in the vicinity of the most promising binding modes. We demonstrate the broad applicability of this approach through the de novo design of binding proteins to 12 diverse protein targets with different shapes and surface properties. Biophysical characterization shows that the binders, which are all smaller than 65 amino acids, are hyperstable and, following experimental optimization, bind their targets with nanomolar to picomolar affinities. We succeeded in solving crystal structures of five of the binder-target complexes, and all five closely match the corresponding computational design models. Experimental data on nearly half a million computational designs and hundreds of thousands of point mutants provide detailed feedback on the strengths and limitations of the method and of our current understanding of protein-protein interactions, and should guide improvements of both. Our approach enables the targeted design of binders to sites of interest on a wide variety of proteins for therapeutic and diagnostic applications.


Assuntos
Proteínas de Transporte , Proteínas , Aminoácidos/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Ligação Proteica , Proteínas/química
17.
J Biol Chem ; 298(2): 101574, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35007536

RESUMO

The glucocorticoid (GC) receptor (GR) is essential for normal development and in the initiation of inflammation. Healthy GRdim/dim mice with reduced dimerization propensity due to a point mutation (A465T) at the dimer interface of the GR DNA-binding domain (DBD) (here GRD/D) have previously helped to define the functions of GR monomers and dimers. Since GRD/D retains residual dimerization capacity, here we generated the dimer-nullifying double mutant GRD+L/D+L mice, featuring an additional mutation (I634A) in the ligand-binding domain (LBD) of GR. These mice are perinatally lethal, as are GRL/L mice (these mice have the I634A mutation but not the A465T mutation), displaying improper lung and skin formation. Using embryonic fibroblasts, high and low doses of dexamethasone (Dex), nuclear translocation assays, RNAseq, dimerization assays, and ligand-binding assays (and Kd values), we found that the lethal phenotype in these mice is due to insufficient ligand binding. These data suggest there is some correlation between GR dimerization potential and ligand affinity. We conclude that even a mutation as subtle as I634A, at a position not directly involved in ligand interactions sensu stricto, can still influence ligand binding and have a lethal outcome.


Assuntos
Dexametasona , Mutação Puntual , Receptores de Glucocorticoides , Animais , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Ligantes , Camundongos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
18.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34789568

RESUMO

Cancer precision medicine implies identification of tumor-specific vulnerabilities associated with defined oncogenic pathways. Desmoid tumors are soft-tissue neoplasms strictly driven by Wnt signaling network hyperactivation. Despite this clearly defined genetic etiology and the strict and unique implication of the Wnt/ß-catenin pathway, no specific molecular targets for these tumors have been identified. To address this caveat, we developed fast, efficient, and penetrant genetic Xenopus tropicalis desmoid tumor models to identify and characterize drug targets. We used multiplexed CRISPR/Cas9 genome editing in these models to simultaneously target a tumor suppressor gene (apc) and candidate dependency genes. Our methodology CRISPR/Cas9 selection-mediated identification of dependencies (CRISPR-SID) uses calculated deviations between experimentally observed gene editing outcomes and deep-learning-predicted double-strand break repair patterns to identify genes under negative selection during tumorigenesis. This revealed EZH2 and SUZ12, both encoding polycomb repressive complex 2 components, and the transcription factor CREB3L1 as genetic dependencies for desmoid tumors. In vivo EZH2 inhibition by Tazemetostat induced partial regression of established autochthonous tumors. In vitro models of patient desmoid tumor cells revealed a direct effect of Tazemetostat on Wnt pathway activity. CRISPR-SID represents a potent approach for in vivo mapping of tumor vulnerabilities and drug target identification.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/isolamento & purificação , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Edição de Genes/métodos , Neoplasias Abdominais/genética , Polipose Adenomatosa do Colo/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Fibromatose Agressiva/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso , Oncogenes , Complexo Repressor Polycomb 2/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , Xenopus , beta Catenina
19.
Nature ; 600(7887): 143-147, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34646012

RESUMO

Anaplastic lymphoma kinase (ALK)1 and the related leukocyte tyrosine kinase (LTK)2 are recently deorphanized receptor tyrosine kinases3. Together with their activating cytokines, ALKAL1 and ALKAL24-6 (also called FAM150A and FAM150B or AUGß and AUGα, respectively), they are involved in neural development7, cancer7-9 and autoimmune diseases10. Furthermore, mammalian ALK recently emerged as a key regulator of energy expenditure and weight gain11, consistent with a metabolic role for Drosophila ALK12. Despite such functional pleiotropy and growing therapeutic relevance13,14, structural insights into ALK and LTK and their complexes with cognate cytokines have remained scarce. Here we show that the cytokine-binding segments of human ALK and LTK comprise a novel architectural chimera of a permuted TNF-like module that braces a glycine-rich subdomain featuring a hexagonal lattice of long polyglycine type II helices. The cognate cytokines ALKAL1 and ALKAL2 are monomeric three-helix bundles, yet their binding to ALK and LTK elicits similar dimeric assemblies with two-fold symmetry, that tent a single cytokine molecule proximal to the cell membrane. We show that the membrane-proximal EGF-like domain dictates the apparent cytokine preference of ALK. Assisted by these diverse structure-function findings, we propose a structural and mechanistic blueprint for complexes of ALK family receptors, and thereby extend the repertoire of ligand-mediated dimerization mechanisms adopted by receptor tyrosine kinases.


Assuntos
Quinase do Linfoma Anaplásico/química , Quinase do Linfoma Anaplásico/metabolismo , Citocinas/química , Citocinas/metabolismo , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo , Quinase do Linfoma Anaplásico/classificação , Quinase do Linfoma Anaplásico/genética , Sítios de Ligação , Ativação Enzimática , Fator de Crescimento Epidérmico/química , Glicina , Células HEK293 , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Especificidade por Substrato
20.
Curr Pharm Des ; 27(45): 4610-4629, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34533439

RESUMO

BACKGROUND: Breast cancer is the most prevalent cancer amongst females across the globe, and with over 2 million new cases reported in 2018, it poses a huge economic burden to the already dwindling public health. A dearth of therapies in the pipeline to treat triple-negative breast cancers and acquisition of resistance against the existing line of treatments urge the need to strategize novel therapeutics in order to add new drugs to the pipeline. HDAC inhibitors (HDACi) is one such class of small molecule inhibitors that target histone deacetylases to bring about chromosomal remodelling and normalize dysregulated gene expression that marks breast cancer progression. OBJECTIVE: While four HDACi have been approved by the FDA for the treatment of different cancer types, no HDACi is specifically earmarked for clinical management of breast cancer. Owing to the differential HDAC expression pertaining to different types of breast cancers, isoform-selective HDAC inhibitors need to be discovered. CONCLUSION: This review attempts to set the stage for the rational structure-based discovery of isoform-selective HDACi by providing structural insights into different HDACs and their catalytic folds based on their classes and individual landscape. The development of inhibitors in accordance with the differential expression of HDAC isoforms exhibited in breast cancer cells is a promising strategy to rationally design selective and effective inhibitors, adopting a 'personalized-medicine' approach.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias de Mama Triplo Negativas , Feminino , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Humanos , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...